The Top 3 Ways AI Is Reducing Onboarding Time for Sales Reps

Employing new sales reps usually involves an onboarding process. But the typical onboarding process is getting longer and less efficient as time goes on. While there are many ways to improve onboarding for sales reps, organizations can get the most “bang for their buck” by incorporating knowledge automation into their onboarding program through the use of AI.

Proof That Sales Onboarding is Stuck

An eye-opening report from Qvidian in 2015 surveyed hundreds of executives and sales leaders from various industries, markets, and company sizes to assess their objectives and challenges. What they found was that sales organizations were struggling with getting the right information into their new sales reps’ hands, and doing so in a way that led to success. Noted in the report:

  • 36% of organizations mentioned “ramping up new sales reps takes too long” as one of the top reasons why their teams were failing to make quotas.
  • Indeed, onboarding of sales reps took an average of 7 to 9 months (measured as the time until a sales rep becomes fully productive). (Note this is an average: 1 in 5 sales reps take over a year to reach this level of performance!)
  • Sales teams were not meeting quotas largely because they were failing to personalize the buyer journey for their customers and effectively communicate value.
  • 55% of the organizations surveyed indicated that part of the reason they failed to communicate value was that reps were struggling to identify the tailored selling content among all the materials they had.

This inefficiency carries a steep price tag, to say the least. Not only does slow and inefficient onboarding mean lost productivity, but it also leads to higher turnover, added expenses for recruiting and training, lower employee morale, and a net negative impact on clients. By one estimate, it costs approximately $115,000 to replace a sales rep…and about 28% of sales reps, or more than a quarter, turn over in a given year.

Indeed, Zappos CEO Tony Hsieh is well known for completely restructuring his company upon learning that bad hires were costing him well over $100 million a year.

Why Sales Onboarding is Failing

That sales onboarding is failing across industries is not a secret. Why it is failing, though, is something that makes sales managers scratch their heads.

That’s because the issues do not stem from the onboarding program itself. We have identified four main reasons why traditional onboarding is failing in today’s sales environment, and they all have to do with the flow of information:

Reason #1: Distribution. Sales reps are scattered across the country, and even across the globe. They are often not located in the same places as the subject matter experts and marketing teams that they need to engage with for information.

Reason #2: Product Evolution. Products are evolving faster and faster. While the innovation is great, what was true of a product line a few months ago might not be true today. Sales reps cannot rely anymore on a single “information dump” at the start of their tenure.

Reason #3: Customer Expectations. Customers and prospects expect faster responses in the digital age. The amount of onboarding needed to keep information fresh in a sales rep’s brain is mind-boggling.

Reason #4: Increased Competitive Pressures. Yes, products and expectations change. But so does the competition. Knowing the competitive landscape and the target market takes much research and study. When sales reps are given this task, they are expected to do more, in less time. When it is given over to marketing, the information too often remains “siloed.”

The Top 3 Ways AI Can Reduce Onboarding Time

Sales is a uniquely human endeavor. How can AI help sales reps become more productive more quickly? We see three main ways that AI can reduce onboarding time:

1. By eliminating the need for “perfect” product information.

If product information is always changing, perhaps the best approach is to stop trying to frontload that information into the onboarding period. By using a knowledge automation tool like Nimeyo, organizations can ensure that sales reps have the right information at the right time, without the need for extensive search or periodic training.

2. By finding tailored content for sales reps in a timely fashion.

Remember, sales teams are, by and large, failing to communicate value because reps struggle with identifying tailored selling content within their own organizations. Wading through large amounts of content is something AI is now really good at doing. Sales reps can use knowledge automation tools to identify specific pieces of content that will help enable sales teams, even down to the level of the individual customer. This cuts down on the time that sales reps need to become familiar with sales materials and helps facilitate their researching the market.

3. By gaining insight into success and failures in a timely manner.

Many organizations struggle when it comes to gaining visibility into the sales cycles. And when they do not have visibility, it can lead to bad decision-making—or no decision-making at all. This is especially true when employees who are not a good fit are allowed to linger in an endless onboarding process.On the other hand, proper sales analytics can identify patterns, allowing organizations to duplicate successes and minimize failures. This can feed back directly into coaching efforts.

And, with less time spent on product information updates and search, more time can be spent on that kind of coaching during those first formative months.

So will AI fix everything that is wrong with sales onboarding today? Of course not. Crucial elements like mentorship and processes that follow best practices will still be needed. But knowledge automation systems can fix the element that is causing the onboarding process to balloon in modern organizations: The sheer amount of knowledge needed to be successful. Cut this bloat from the onboarding process, and your sales reps will become productive much more quickly.

Two Real-Life AI Use Cases for Sales Productivity

That Artificial Intelligence (AI) is having a huge impact on business is nothing new. Market projections of revenue gained from AI deployment will be in the neighborhood of $36.8 billion by the year 2025, and are already at the $643.7 million mark today.

But for all the buzz surrounding AI and its cousins, Big Data and digital transformation, it has been hard to imagine what concrete business applications the technology would have outside of business intelligence and marketing and CRM. Indeed, one assumption we keep running into is that the more “human” side of business—sales and customer service—has little to gain from AI.

That assumption is being proved wrong. For one thing, sales roles are getting closer scrutiny, with over 3 million sales jobs expected to disappear over the next 5 years. This means that fewer and fewer reps will be expected to drive more and more growth, just to survive. It also means a keener focus on activities that lead directly to more closes. In short, higher sales productivity.

 

And yet, one of the biggest obstacles to greater sales productivity is knowledge hunting, or more precisely, the time and effort sales reps have to put in uncovering just the right bits of information they need from the content silos at a given time.

This is something AI has become incredibly good at: Extracting just the needed information from a large base of unstructured data and conversations. We can illustrate this best by looking at a couple of the use cases for our own AI knowledge automation solution, Nimeyo. Nimeyo provides some good examples of how sales teams are now using AI as their sales enablement tool of choice.

AI Use Case #1: Smart Knowledge Bases and Email Autoresponders

The Context:

Sales teams depend critically on being able to answer a prospect’s questions quickly and accurately. For a large sales organization, this requires a huge chunk of a sales rep’s time. Complicating this picture is the fact that many organizations are geographically scattered, and large numbers of reps are expected to learn about complex products and respond to customers’ queries about them in a short amount of time.

Reps often rely on sales enablement and product/technical marketing to provide them with technical information about product features, capabilities, solutions, and roadmaps. Many have set up email distribution lists to align sales and marketing teams in an effort to control the flow of customer-related information.

The Challenge:

What these distribution lists look like in real life can be less than stunning. Reps ask questions and then wait for responses from a subject matter expert (SME)—often someone located halfway around the world. This means an average response time measured in days, with many inquiries requiring multiple follow-ups. Even after such an extended process, roughly 50% of information requests are left unanswered.

Life is not easy for the SMEs either, who often find that more than a third of the questions they receive are repetitive, having been answered in previous conversations. While SMEs are using wikis and other tools to disseminate knowledge, these rarely are used regularly by reps. Nor do SMEs have a way to “check the work” being done by sales reps by providing feedback on things such as product decks. The result is a lot of redundant effort, and less time for sales teams to actually work on closing deals.

How AI Helps:

Nimeyo’s AI solution allows these kinds of sales organizations to automatically build and dynamically sustain a knowledge base of information from email threads in a distribution list. An email autoresponder can be set up that automatically reviews each new email sent on various distribution lists, automatically identifies the information request, and responds with the most appropriate knowledge. The responder can also carbon-copy the relevant SME so he or she can further contribute or revise the answer, if needed.

If a response is not available (because the product being discussed is brand new, for example), the AI system waits for responses to the email thread from the SMEs, and that knowledge is then added to the knowledge base for future use.

With this AI technology, reps are able to get their questions answered in under 30 seconds—from anyplace, and on any device, using just their favorite email client. They no longer have to monitor emails on distribution lists but can still leverage the collective knowledge generated by the people on that list over time.

For their part, the SMEs no longer have to deal with repetitive questions, and when they do respond to questions, they can be assured that their contribution will be leveraged in all future inquiries. Large organizations that rely on email as a primary tool for collaboration can leverage a tremendous amount of tribal knowledge that field teams generate for efficiency and effectiveness.

AI Use Case #2: Extracting Information from Unstructured Collaboration Tools (Slack)

The Context:

Today’s modern sales organizations are using popular collaboration tools like Slack, HipChat or Microsoft Teams to communicate and collaborate. In some of the growing organizations, channels in Slack or HipChat are extensively used to discuss products, pricing, competitive situations, solutions, and related topics. These channels are treasure troves of tribal information relating to product, customer, and business.

The Challenge:

Slack, to take one example, started out as a medium for informal communication. It quickly became an alternative to email in many organizations, with broad adoption. However, tools like Slack don’t impose any logical structure on the content thus generated, focusing solely on making conversations flow naturally. As a result, search and retrieval are slow and painful.

While there are benefits to this kind of communication, more and more sales organizations are now realizing the costs of using such synchronous, always-on, noisy mediums. Sales reps in particular are spending more and more of their time trying to extract the useful information they need from a sea of noise.

How AI Helps:

Nimeyo’s NLP-driven bot can provide answers to sales-related questions right within Slack.

Sales reps can direct-message the Nimeyo bot in Slack and get relevant information, irrespective of where that information may reside.

For example, the Nimeyo bot can fetch a competitive battlecard from Google Drive or Box, or fetch the status of a particular deal from Salesforce CRM or status of a customer issues from Zendesk or answer an RFP question from RFP database. The bot can also present snippets of conversations that might have occurred within Slack itself and that are relevant to the request.

The Nimeyo bot also becomes a virtual user in the channel and listens to the chatter. When a real question is asked by a rep for which it feels it has an answer or relevant information, it will jump in with that information—like a real human being. Again, the information source can be any document, CRM, ticketing system, email, or the Slack channels themselves.

 

In short, AI can be used to sort through unstructured data, extract relevant knowledge, and present that knowledge on demand as if it were a regular user—but without the delay.

 

These are just two simple ways that AI agents are automating knowledge-hunting activities. Sales organizations that do this remove a major time-waster, thus freeing their reps (and their SMEs) to focus more on revenue-generating activities and boosting productivity. In fact, Gartner predicts that, by 2020, 30 percent of all B2B companies will employ AI to augment at least one of their primary sales processes.

 

And if you are still in doubt… we would love the chance to prove the value of such automation. Sign up for a free trial of Nimeyo, and we would be delighted to give you a tour and show how the Nimeyo AI can be best used for sales productivity in your organization.